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Abstract. We use a truncated replicated nonlinear sigma model to study crossover in the 
vicinity of the percolation threshold of a randomly diluted classical m-component Heisen- 
berg model with m > 2. We find that the order parameter correlation length 5 diverges 
with temperature T for concentration p of occupied bonds greater than the percolation 
threshold pc as exp(2np,(p) /T)  where p,(p)-Ip-p,l’ is the spin stiffness and for p = p c  
as T d ’ ” p  where v p  is the percolation correlation length exponent. The numerical values 
of the exponents 6 and v P  predicted in our truncation scheme, however, differ significantly 
from their accepted values. 

1. Introduction 

A randomly diluted m-component Heisenberg model with 0, symmetry undergoes a 
percolation transition (Stauffer 1975, Lubensky 1975, Stanley et al 1976) as a function 
of the concentration p of occupied sites or bonds. For p greater than the percolation 
threshold p c ,  there is an infinite connected cluster of spins and a non-zero magnetisation 
at temperature T = 0. At finite temperature, there is a thermally driven phase transition 
to a paramagnetic state for all spatial dimension d > 2 with a transition temperature 
TJp) that goes continuously to zero as p + p c  as shown in figure l ( a ) .  The point 

P 
P 

Figure 1. ( a )  Phase diagram of a randomly diluted 0,,, model in spatial dimension d > 2. 
There is no long-range order at any temperature until there is an infinite cluster of connected 
spins for concentration of occupied bonds p greater than the percolation threshold pc. For 
p > pc, there is a ferromagnetic phase (F) with a transition temperature to the paramagnetic 
phase (PI that goes to zero at p ,  as lp -pclm. ( b )  Phase diagram for the randomly diluted 
0,,, model with m > 2 in two dimensions. There is long-range order only at T = 0 for 
p pc.  The order parameter correlation length # diverges as T - P  0 as exp(25rp,( p ) /  T )  for 
p > pc (path A) and as T-”’”r at p = p c  (path B).  
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p = p c ,  T=O is thus a multicritical point at which both p - p c  and T are relevant 
variables. The scaling exponent associated with p - pc  is the inverse of the percolation 
correlation length exponent v,. The exponent A ,  = 4/  v p  associated with temperature 
is related to the exponent t controlling the growth of the spin wave stiffness (Stephen 
1978, Harris and Lubensky 1987) ps or the conductivity Z (Straley 1976, de Gennes 
1976, Skal and Shklovskii 1976, Harris and Fisch 1977) of a randomly diluted resistor 
network via 

t = ( d  -2) v,+ 4. (1.1) 

Thus, in the vicinity of the percolation multicritical point, the spin correlation length 
5( T, p )  obeys the scaling relation 

5 ( T , p ) =  lAPl-"pf(T/(Ap)4) (1.2) 
where Ap = p - p c ,  This equation implies that 

5- T-"p/+ (1.3) 
at p = p c  and that 

TJp) - (Ap)'  (1.4) 
for d > 2. 

In exactly two dimensions, undiluted 0, models (Polyakov 1975, Migdal 1976a, b, 
Brezin and Zinn-Justin 1975, Pelcovitz and Nelson 1976, Chakravarty et a1 1988) with 
m > 2 have no long-range or quasi-long-range order except at T = 0: the paramagnetic 
phase is the stable phase for all T > 0. At T = 0, the ferromagnetic state is characterised 
by a spin wave stiffness p s .  The correlation length in the paramagnetic phase diverges 
exponentially rather than as a power of temperature: 

5 - exp(271-pJ TI. (1.5) 

As the system is diluted, it remains ferromagnetic at T = 0 for p > p c  as shown in the 
phase diagram of figure l ( b ) .  The spin wave stiffness p , ( p )  decreases as p decreases 
to zero as ( p  -pc)' (Harris and Lubensky 1987), even in two dimensions. One therefore 
expects the correlation length in the diluted magnet to diverge exponentially with 
temperature but with a renormalised exponent determined by p 5 ( p ) :  

(1.6) 
Since the exponent v p  = f (den Nijs 1979, Nienhuis 1982) and 4 = 1.296 (Zabolitzky 
1984, Lobb and Frank 1984, Herman et a1 1984, Hong et a1 1984) are perfectly regular 
in two dimensions, the spin correlation length at p = p c  diverges as the power law 
T-",'' 

The nature of the crossover from exponential to power-law divergence of the 
correlation length has not, to our knowledge, been investigated and is the subject of 
this paper. We will use a replicated random nonlinear sigma model (Polyakov 1975, 
Migdal 1976a,b, Brezin and Zinn-Justin 1976, Pelcovitz and Nelson 1976) to study this 
crossover in the vicinity of the percolation threshold of a classical m-component 
Heisenberg model with m > 2 .  Our analysis, like that of Chakravarty et a1 (1988) is 
based upon one-loop renormalisation group recursion relations and is only approxi- 
mate. The potentials entering our replicated field theory are the cumulants of the 
exchange with respect to the probability distribution of random dilution. There are 
an infinite number of these cumulants, and they are all needed to obtain an exact 
description of the model. At the pure, fully ordered, zero-temperature fixed point, the 

Z( T, P) - exp(2.irpJp)l TI. 

(equation (1.3)) even in two dimensions. 
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potentials associated with the kth cumulant are irrelevant for k 2 2 and become more 
irrelevant with increasing k. We arbitrarily truncate the full replicated field theory, 
retaining only the most relevant first and second cumulants of the exchange. The first 
cumulant or average exchange provides a measure of the inverse temperature. There 
are two potentials of different symmetry arising from the second cumulant. In the 
space of these two potentials at zero temperature, we find three fixed points as shown 
in figure 2 in addition to the fixed point of the undiluted system, which is stable with 
respect to randomness in agreement with the results of Murthy (1988). Of the three 
new fixed points, two are doubly unstable and in unphysical regions of parameter 
space. We identify the remaining singly unstable fixed point as the percolation fixed 
point. The correlation length divergence in the vicinity of this fixed point is a power 
law in temperature at p = p c  and exponential in temperature of p > p c .  The numerical 
values of the percolation correlation length and crossover exponents obtained in our 
approximate analysis are respectively vp = f and = 0.195. Unfortunately, these are 
quite far from the accepted value listed above. Thus, though the predictions of our 
one-loop truncated field theory are in qualitative agreement with what one would 
expect, they are not in good quantitative agreement with known results. 

"2 T 

Figure 2. Renormalisation group Row diagram in the u , - c z  plane at T =  0. There are four 
fixed points: ( 0 )  the stable ordered-phase fixed point with c, = u2 = 0, ( 1 )  the once-unstable 
fixed point in the physical first quadrant, which we identify with the percolation fixed 
point, and two twice-unstable fixed points ( 2 )  and ( 3 )  in the unphysical second and fourth 
quadrants. 

The percolation fixed point in our analysis is very similar to the RVB fixed point 
of the quantum nonlinear sigma model for an antiferromagnet discussed by Chakravarty 
et a1 (1988). This model is characterised by a parameter y ,  in addition to the tem- 
perature, proportional to h. The RVB fixed point separates the small-y ordered Neil 
state from a large-y melted spin fluid, which has been identified (Chakravarty et a1 
1988) with some version of the resonating valence bond (RVB) state (Anderson 1987, 
Kivelson et a1 1987). As a function of temperature, the correlation length diverges 
exponentially with a quantum renormalised spin stiffness as the Nee1 state is approached 
and with a power law as the R V R  critical point is approached. Dilution in the classical 
spin model plays the same role as quantum fluctuations in the quantum model. In  
both cases, the spin wave stiffness goes to zero at a critical point at which the correlation 
length diverges as a power law in temperature. 
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2. The model 

We begin with a classical 0, model with unit length spins S ( x )  at each site x on a 
d-dimensional lattice with coordination number z and lattice spacing a. The spins 
interact via an exchange j ( x ,  x )  depending on the bond (x ,  x ) .  The reduced Hamiltonian 
is 

1 
T H =-c J ( x ,  x ' ) [ S ( X ) - S ( X ' ) ] *  (2.1) 

where T is the temperature. The exchange is a quenched random variable, and we 
introduce replicated spins (Edwards and Anderson 1975) S " ( x )  with IS"(x)12 = 1 for 
a = 1 , .  . . , n to obtain the quenched averaged free energy via the replicated partition 
function 

where [ I , ,  indicates an average over J ( x ,  x ' )  and 

01 

T - ' J ( x , x ' )  c [S"(X)-S"(X')]~ 

/ \ 2  

a 
= K  C[S"(X) -S" (X ' ) ] ' -~A  

3 1 
-- 3! A3( c [ S " ( X )  - S 0 1 ( ~ f ) ] 2 )  +. . . (2.3) 

where 

E = [ JIav/ T A = ( [ J 2 1 a ~ - [ J l ~ , ) / T 2  (2.4) 

and A k ,  k = 3, . . . is the kth cumulant of J /  T. For a randomly diluted system, J ( x ,  x ' )  
is equal to J with probability p and zero with probability (1 - p ) .  In this case 

[S"(X) - S"(x' )12  ( 2 . 5 )  

and 

= p J / T  A = p ( l  - p ) J Z / T 2 .  (2.6) 

Note that K remains non-zero for all 0 < p < 1; its inverse provides a measure of the 
temperature. 

We now set S" =(tr", U " )  with mu =(.rr:, . . . , rz-]) and (n")'+(u")'= 1, take 
the continuum limit of ( 2 . 2 ) ,  and rescale lengths via x +  A x  where A is a wavenumber 
cutoff of order 2rr /a .  The resulting replicated partition function is 

[ Z " ] , ,  = DT e-H (2.7) 
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where 

d d ~ [ ( V ~ T O L ) 2 + ( V ~ " ) 2 ]  
2t n 

where 

t - 1  = ( p ~ ~ d - 2 ) /  T ps = (z/d)[J],,a-'d-2' 

and 

245 

( 2 . 8 )  

( 2 . 9 )  

(2 .10)  

(2 .11)  

(2 .12)  

The last term in ( 2 . 8 )  arises as usual from the Jacobian (Pelcovitz and Nelson 1976) 
associated with the parametrisation of S" in terms of nu. The ratio of u1 to u2 is d / 2  
if the exchange J ( x ,  x') is an independent random variable at each bond (x, x'). This 
ratio is modified if there is correlation in the exchanges on neighbouring bonds, for 
example if [6J(xl ,  x2)SJ(x1, x4)ldV has one value if (xI, x2) and (xj,  x4) are the same 
bond and another value if (xI, x2) and (x3, x4) are different bonds sharing a common 
site. In general, correlations in J could generate additional contributions to vgk/ 
reflecting the point group symmetry of the lattice. 

Simple power counting (as manifested by the powers of A in ( 2 . 9 ) ,  (2 .11) ,  and 
( 2 . 1 2 ) )  shows that t is the most relevant potential near t = O  and that higher-order 
cumulants of J are more irrelevant than the second-order cumulants giving rise to v 1  
and u 2 .  We will retain only the most relevant terms shown in ( 2 . 8 )  for our renormalisa- 
tion analysis, neglecting third- and higher-order cumulants of J. It should be noted 
that u I  and U, are proportional to [J]:: and are infinite when [J] ,"  = 0. Therefore, 
fixed points with finite v I  and v2 correspond to non-zero [.TIdk and thus not to spin-glass 
phases (Edwards and Anderson 1975, Binder and Young 1986). 

3. Recursion relations 

Momentum shell recursion relations for the potentials t ,  u1 and v2 can be obtained in 
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the usual way (Pelcovitz and Nelson 1976) to one-loop order. In the limit n + 0, we find 

-- dvl( ' ) -  -duI(f)+23v:(l)+ 1 2 ~ ~ ( l ) ~ ~ ( l ) + ~ ~ ( f )  
dl  

(3.1) 

-- dv2(f )  - -dv2(  I )  + 11 u : ( l )  + 1 4 ~ , (  z)u*+9v:(  I )  
df 

where E = d - 2. We have not included temperature-dependent contributions in the 
recursion relations for u1 and v 2 .  When v I  = u2 = 0, the equation for t ( 1 )  reduces to 
that of a pure system which predicts the exponentially divergent correlations length 
of (1.5) for E = O .  At a fixed point where 6vT+2$ is non-zero and positive, the last 
term dominates over the second when E = 0, leading to the power-law divergence of 
(1.3) with d/ v = 6vT + 221:. Thus if the u1 and v2 equations have a non-trivial fixed 
point then, the t equation produces the expected exponential to power-law crossover. 

The fixed points of the U equations can be obtained by solving a cubic equation. 
The values of u1 and u2 and associated stability exponents are listed in table 1. The 
renormalisation group flows for u1 and u2 are shown in figure 2. Note that the pure 
system fixed point with U ,  = u2 = 0 is globally stable in agreement with Murthy (1988). 
There are two twice-unstable fixed points in the unphysical second and fourth quadrants 
( u l  and v2 must be positive since they are proportional to the second cumulant or the 
variance of a random variable). There is one once-unstable fixed point in the physical 
first quadrant which we identify with the percolation fixed point. The inverse of the 
positive exponent is the percolation correlation length exponent 

v p = A - I = +  (3.2) 
in this approximation. I t  differs significantly from the exact result (den Nijs 1979, 
Nienhuis 1982) of :, indicating that neglect of higher cumulants of [ J ]  is not a 
quantitatively good approximation. 

To study crossover near t =0, we integrate the recursion relations for t ( f ) :  

where 

At the percolation fixed point Q ( 1 )  = e x p [ ( 6 ~ ~ + 2 u T ) l ]  and 

f ( f )  -exp[(d/v,)l*lt(O) = exp[(6u:+2v~)I*]r(O) 

Table 1. Fixed points and stability exponents. 

(3.3) 

(3.5) 

~~ ~~ 

0 0 0 -2.0 -2.0 
1 0.038 592 0.079 166 2.0 -0.769 2355 
2 -0.289 05 1 1.021 527 3.256 027 2.0 
3 0.289 106 -0.427 737 2.028 931 2.0 
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so that 

where 
4 = v,(6vT + 2vT) = 0.194 94 

and is the bare correlation length. The expected power law in temperature depen- 
dence of the correlation length at the percolation threshold is reproduced by our 
analysis, but again the numerical value of the exponent 4 differs significantly from 
the accepted value of 1.296. 

To simplify our analysis of these equations, we will assume that u l ( 0 ) / u z ( O )  = 
U T /  UT E p * ,  so that flow is along the line connecting the percolation fixed point to the 
origin. Corrections arising from deviations of v , (  I)/ U*( I )  from p* can easily be treated 
and will not significantly alter our results. In this case, the equation for U, can be 
integrated exactly 

(3.7) 

from which we obtain 

~ ( 1 )  ={I  -[ul(o)/vT](l -e-2')}-'. (3.8) 

(3.9) 

To obtain ( ( I )  for U ,  > v? ( p  > p c ) ,  note that Iim/+= Q( I )  + [ 1 - ( u , ( O ) /  UT)]-', so that 

Q ( C Q ) t ( O )  
1 - [ ( m  -2)/(2.rr)Ir(O)Q(CQ)I' 

r ( l )  - 
Then, choosing the matching point so that t ( l * )  = 2 7 r / ( m  -2) ,  we obtain 

= e x p [ ( 2 4 o ) / Q ( m ) ) I -  11 E ex~[(2.rrp,(p)l T )  - 11 (3.10) 

where 

P , ( P ) / P , ( O )  = [1 -(Ul(O)/U?)l' = (IP -PcI/PA'. (3.11) 

Thus 5 diverges exponentially with a renormalised exponent determined by the diluted 
spin wave stiffness that tends to zero as lp -pel', as required. The spin wave stiffness 
can be calculated directly via 

(3.12) 

where G ( 9 )  is the Fourier transform of the correlation function ( n ( x )  - n ( x ) ) .  The 
result obtained in this way agrees with that of (3.11) to lowest order in an expansion 
in 4 and u , ( O ) / v T .  Exact agreement should not be expected because of the truncation 
procedure we have used. 

P,(P) = lim [( T / q 2 ) G - ' ( s ) l  
T.q -0  

4. Summary and discussion 

We have used a replicated nonlinear sigma model to study the two-dimensional 
randomly diluted Heisenberg model with 0,, symmetry for m > 2. In the truncated 
space of the most relevant of the potentials describing disorder, we found a once- 
unstable zero-temperature fixed point describing the percolation critical point at p = p c .  
Renormalisation group recursion relations predict exponential divergence with tem- 
perature of the order parameter correlation length for p > p c  and power-law divergence 
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at p = p c ,  The numerical values of the percolation correlation length exponent vp and 
the thermal crossover exponent 4 are, however, in poor agreement with the accepted 
values. 

We have also investigated the randomly diluted quantum Heisenberg antiferromag- 
net using the techniques outlined in this paper. As discussed by Chakravarty et a1 
(1988), the RVB fixed point is expected to be unstable with respect to randomness. In 
the one-loop truncated scheme we use, this fixed point is unfortunately stable, and the 
quantum percolation fixed point expected for this model (Raghavan and Mattis 1981, 
Harris, 1982, Shapir et a1 1982) does not appear. 
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